

Fig. 1. Pressure dependence of the Curie temperature in Fe₂P and Fe₂P_{0.9}As_{0.1}.

using a gas generator with a vibrating-coil magnetometer, as described previously. 4 The Curie-temperatures $\rm T_C$ were obtained at low (100 Oe) fields, and plots of $\rm T_C$ vs hydrostatic pressure P are shown in Fig. 1. The points are experimental, and the solid lines are the analytic functions (with P in kbar and $\Delta \rm T_C$ in $^{\circ}$ C)

$$P = -0.252(\Delta T_c) -0.0012(\Delta T_c)^2 \text{ for Fe}_2 P$$
 (1)

$$P = -0.71(\Delta T_c) -0.0017(\Delta T_c)^2 \text{ for } Fe_2 P_{0.9} As_{0.1}$$
 (2)

Extrapolation of eq. (1) to the extremum defined by $\partial P/\partial (\Delta T_c) = 0$ gives a critical pressure $P_c = 13.3$ kbar above which the ground state of Fe_2P should no longer be ferromagnetic.

Surprisingly, there was no significant change with pressure in the magnetization per molecule, μ , at 58K. Examination of μ vs the applied field H at T = 58K showed no appreciable change on passing from 1 atm to 10 kbar pressure. However, measurement of μ vs T/T_{C} for Fe $_{2}$ P gave strikingly different results for 1 atm and 10 kbar. At H = 10 kOe, the inflection in μ vs T occurs at $T\approx 1.07~T_{C}$ at P = 1 atm, but at $T\approx 1.15~T_{C}$ at P = 10 kbar. Furthermore, an extraordinarily large exchange enhancement of the susceptibility, which extends to temperatures well above T_{C} , is markedly greater at 10 kbar than at 1 atm. At P = 10 kbar and T = 1.02 T_{C} , a plot of μ vs H is extremely nonlinear, resembling the initial magnetization curve of a ferromagnet at T < T_{C} .

DISCUSSION

If the moment of Fe₂P were reduced from μ_0 = 3.0 μ_B because of conduction-band overlap of E_F, pressure should change z_d , and hence μ_0 ,

more dramatically than T_c . Therefore, we conclude that the moment of ${\rm Fe}_2 P$ is reduced because the molecular fields are not strong enough to empty all the antibonding states of antiparallel spin.

The existence of antiparallel-spin electrons in the ground state would create a ferromagnetic spin-density wave in the magnetically ordered phase (antiparallel-spin excited electrons create spin waves), and a spin-density wave reflects a long-range antiferromagnetic component to the interatomic-exchange interactions. Since longer M-M separations decrease the width of the 3d bands, the relative importance of this antiferromagnetic component must decrease with increasing As concentration x, which would account for the sharp rise with x in $T_{\rm C}$ (from 221 to 443K) 2 over the interval $0 \leqslant x \leqslant 0.33$. On the other hand, pressure would increase the antiferromagnetic component, and the critical pressure $P_{\rm C}$ presumably marks a transition from a ferromagnetic spin-density wave to a metamagnetic state.

The remarkable susceptibility above T_c in Fe_2P , and its enhancement by pressure, would seem to indicate that T_c is suppressed by pressure more rapidly than is the paramagnetic Curie temperature θ . Suppression of T_c relative to θ by weak, long-range antiferromagnetic interactions has been observed in the metamagnetic thiospinel $Zn[Cr_2]S_4$, which contains localized 3d electrons. In Fe_2P , the ferromagnetic short-range order above T_c must be exceptional and appears to extend well above T_c , although the magnetic interactions are three-dimensional. This behavior is quite different from that found in $CoS_{2-x}Se_x$, where the ferromagnetic moment is also reduced because the bandwidth is too large. The $CoS_{2-x}Se_x$ 3d bands are broadened with x, and the ferromagnetic-to-metamagnetic transition is marked by a reduction in θ that makes $\theta < T_c$.

Within the molecular-field approximation, the paramagnetic Curie temperature θ is given by

$$\theta = (2/3k)S(S+1)\sum_{v} z_{uv} J_{uv}$$
(3)

where $z_{\rm UV}$ is the number of v atoms near-neighbor to a u atom. If the interatomic exchange energy falls off more rapidly than linearly with decreasing atomic separation, then

$$J_{uv} \approx \sum_{\ell} J_{uv\ell}^{o} \sum_{j} \left[1 + \beta_{uv}^{j} \varepsilon_{j} - \frac{1}{2} (\gamma_{uv}^{j} \varepsilon_{i})^{2} + \cdots \right]$$
 (4)

The $J_{uv\ell}^0$ are components of the uv exchange interaction in the unstrained sample (P = 0) and $\beta_{uv}^j > 0$ because an $\epsilon_j < 0$ increases the 3d bandwidth, thereby lowering J_{uv} . The strain at equilibrium is given by 4

$$\varepsilon_{j} = \sum_{i} K_{ji} \left[\sum_{u,v} (\partial J_{uv} / \partial \varepsilon_{i}) \vec{S}_{u} \cdot \vec{S}_{v} - P + T \sum_{k} \alpha_{k} c_{ki} \right]$$
 (5)

where K_{ji} = cofactor $c_{ij}/(\text{determinant }c_{ij})$, \vec{S}_u and \vec{S}_v are the thermodynamic expectation values of the spins at sites u and v, α_k is a thermal-expansion coefficient, and the c_{ki} are elastic constants. Since μ_0 appears to be